

Deep Learning

2.1 Quick visit to ML concepts

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Machine Learning

General objective is to capture the data regularity for making predictions

Machine Learning

- General objective is to capture the data regularity for making predictions
- In our linear regression example: we modeled the x and y as linearly related for fitting a line and predict y from x

Machine Learning

- General objective is to capture the data regularity for making predictions
- In our linear regression example: we modeled the x and y as linearly related for fitting a line and predict y from x
- 3 Broadly these are types of the inferences
 - Regression (e.g. customer satisfaction, stock prediction, etc.)
 - Classification (e.g. object recognition, speech processing, disease detection etc.)
 - Density estimation (e.g. sampling/synthesize, outlier detection, etc.)

Standard formalization

^① Classification and Regression: considers a measure of joint probability density $f_{X,Y}$ over the observation/value of interest and training (i.i.d.) samples $(x_n, y_n), n = 1, \ldots N$

Standard formalization

- Classification and Regression: considers a measure of joint probability density f_{X,Y} over the observation/value of interest and training (i.i.d.) samples (x_n, y_n), n = 1,...N
- 2 Density estimation: distribution f_X and $x_n, n = 1, ..., N$

- **1** Classification: $f_{X,Y}(x,y) = f_{X/Y=y}(x)P(Y=y)$
- ② Draw Y first, then given the value of Y generate X

- **1** Classification: $f_{X,Y}(x,y) = f_{X/Y=y}(x)P(Y=y)$
- ② Draw Y first, then given the value of Y generate X
- 3 Conditional distribution $f_{X/Y}$ stands for the distribution of observable signal for category y (e.g. image of a dog, weight of a 30 year Indian male)

1 Regression: $f_{X,Y}(x,y) = f_{Y/X=x}(y)f_X(x)$

- 1 Regression: $f_{X,Y}(x,y) = f_{Y/X=x}(y)f_X(x)$
- ② First generate X, given its value generate Y

Summary: three types of inferences

- Classification
 - X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \dots, C\}$
 - Aim is to estimate the $\operatorname{argmax}_y \ P(Y=y/X=x)$

Summary: three types of inferences

- Classification
 - X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \dots, C\}$
 - Aim is to estimate the $\operatorname{argmax}_y P(Y = y / X = x)$

Regression

- X, Y random variables on $\mathcal{L} = \mathcal{R}^D imes \mathcal{R}$
- Aim is to estimate $\mathbb{E}(Y|X = x)$

Summary: three types of inferences

- Classification
 - X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \dots, C\}$
 - Aim is to estimate the $\operatorname{argmax}_y P(Y = y / X = x)$

Regression

- X, Y random variables on $\mathcal{L} = \mathcal{R}^D imes \mathcal{R}$
- Aim is to estimate $\mathbb{E}(Y|X = x)$
- Density estimation
 - X is random variable \mathcal{R}^D
 - Aim is to estimate the f_X

This categorization is not hard

Boundaries are vague

1 We may perform classification via class score regression

This categorization is not hard

Boundaries are vague

- (1) We may perform classification via class score regression
- 2 Density estimation can perform classification using Baye's rule

Risk/Loss

$\textcircled{1} \textbf{Learning: finding a good function } f^* \text{ from a set of functions } \mathcal{F}$

- $\textcircled{1} \textbf{Learning: finding a good function } f^* \text{ from a set of functions } \mathcal{F}$
- ⁽²⁾ How to find the goodness of a function f?

- (1) Learning: finding a good function f^* from a set of functions ${\mathcal F}$
- ⁽²⁾ How to find the goodness of a function f?
- (3) Through a loss $l : \mathcal{F} \times \mathcal{L} \to \mathcal{R}$

- (1) Learning: finding a good function f^* from a set of functions ${\mathcal F}$
- ⁽²⁾ How to find the goodness of a function f?
- 3 Through a loss $l : \mathcal{F} \times \mathcal{L} \to \mathcal{R}$
- Gusting Such that value of l(f, z) increases with the wrongness of f on z: (measure of discripency between the expected and predicted)

- (1) Learning: finding a good function f^* from a set of functions ${\mathcal F}$
- ⁽²⁾ How to find the goodness of a function f?
- 3 Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$
- G Such that value of l(f, z) increases with the wrongness of f on z: (measure of discripency between the expected and predicted)
 - Regression: $l(f,(x,y)) = (f(x) y)^2$
 - Classification: $l(f, (x, y)) = \mathbf{1}(f(x) \neq y)$
 - Density estimation: l(q, z) = -log(q(z))

5

- (1) Learning: finding a good function f^* from a set of functions $\mathcal F$
- ⁽²⁾ How to find the goodness of a function f?
- 3 Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$
- G Such that value of l(f, z) increases with the wrongness of f on z: (measure of discripency between the expected and predicted)
- **5** Regression: $l(f, (x, y)) = (f(x) y)^2$
 - Classification: $l(f, (x, y)) = \mathbf{1}(f(x) \neq y)$
 - Density estimation: l(q, z) = -log(q(z))
- Icoss may have additional terms (from prior knowledge)

Expected Risk

(1) We want f with small expected (average) risk $R(f) = \mathbb{E}_z(l(f, z))$

Expected Risk

 We want f with small expected (average) risk R(f) = E_z(l(f, z))
 f^{*} = argmin R(f) f∈F

Expected Risk

- We want f with small expected (average) risk R(f) = E_z(l(f, z))
 f^{*} = argmin R(f) f ∈ F
- 3 This is unknown. However, if the training data $\mathcal{D} = \{z_1, \ldots, z_N\}$ is i.i.d. we can estimate the risk empirically (known as empirical risk),

$$\hat{R}(f; \mathcal{D}) = \hat{\mathbb{E}}_{\mathcal{D}}(l(f, z)) = \frac{1}{N} \sum_{i=1}^{N} l(f, z_n)$$