

Deep Learning

2.1 Quick visit to ML concepts

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Machine Learning

¹ General objective is to capture the data regularity for making predictions

Machine Learning

- ¹ General objective is to capture the data regularity for making predictions
- 2 In our linear regression example: we modeled the x and y as linearly related for fitting a line and predict y from x

Machine Learning

- ¹ General objective is to capture the data regularity for making predictions
- 2 In our linear regression example: we modeled the x and y as linearly related for fitting a line and predict y from x
- ³ Broadly these are types of the inferences
	- Regression (e.g. customer satisfaction, stock prediction, etc.)
	- Classification (e.g. object recognition, speech processing, disease detection etc.)
	- Density estimation (e.g. sampling/synthesize, outlier detection, etc.)

Standard formalization

¹ Classification and Regression: considers a measure of joint probability density $f_{X,Y}$ over the observation/value of interest and training (i.i.d.) samples (x_n, y_n) , $n = 1, ... N$

Standard formalization

- ¹ Classification and Regression: considers a measure of joint probability density f_{XY} over the observation/value of interest and training (i.i.d.) samples (x_n, y_n) , $n = 1, ... N$
- 2 Density estimation: distribution f_X and $x_n, n = 1, \ldots N$

1 Classification: $f_{X,Y}(x,y) = f_{X/Y=y}(x)P(Y=y)$

- 1 Classification: $f_{X,Y}(x,y) = f_{X/Y=y}(x)P(Y=y)$
- ² Draw Y first, then given the value of Y generate X

- 1 Classification: $f_{X,Y}(x,y) = f_{X/Y=y}(x)P(Y=y)$
- ² Draw Y first, then given the value of Y generate X
- ³ Conditional distribution *fX/Y* stands for the distribution of observable signal for category y (e.g. image of a dog, weight of a 30 year Indian male)

1 Regression: $f_{X,Y}(x,y) = f_{Y/X=x}(y) f_X(x)$

- **1** Regression: $f_{X,Y}(x,y) = f_{Y/X=x}(y) f_X(x)$
- ² First generate X, given its value generate Y

Summary: three types of inferences

- ¹ Classification
	- X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \ldots, C\}$
	- Aim is to estimate the $argmax_{y} P(Y = y/X = x)$

Summary: three types of inferences

Classification

X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \ldots, C\}$ Aim is to estimate the $argmax_{y} P(Y = y/X = x)$

¹ Regression

- X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \mathcal{R}$
- Aim is to estimate $\mathbb{E}(Y/X=x)$

Summary: three types of inferences

Classification

- X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \{1, \ldots, C\}$ Aim is to estimate the $argmax_{y} P(Y = y/X = x)$
- ¹ Regression
	- X, Y random variables on $\mathcal{L} = \mathcal{R}^D \times \mathcal{R}$
	- Aim is to estimate $\mathbb{E}(Y/X=x)$
	- Density estimation
		- X is random variable R*^D*
		- Aim is to estimate the *f^X*

This categorization is not hard

Boundaries are vague

¹ We may perform classification via class score regression

This categorization is not hard

Boundaries are vague

- ¹ We may perform classification via class score regression
- ² Density estimation can perform classification using Baye's rule

Risk/Loss

¹ Learning: finding a good function *f* ∗ from a set of functions F

- ¹ Learning: finding a good function *f* ∗ from a set of functions F
- ² How to find the goodness of a function *f*?

- ¹ Learning: finding a good function *f* ∗ from a set of functions F
- ² How to find the goodness of a function *f*?
- **3** Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$

- ¹ Learning: finding a good function *f* ∗ from a set of functions F
- ² How to find the goodness of a function *f*?
- **3** Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$
- ⁴ Such that value of *l*(*f, z*) increases with the wrongness of *f* on *z*: (measure of discripency between the expected and predicted)

- ¹ Learning: finding a good function *f* ∗ from a set of functions F
- ² How to find the goodness of a function *f*?
- **3** Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$
- ⁴ Such that value of *l*(*f, z*) increases with the wrongness of *f* on *z*: (measure of discripency between the expected and predicted)
- 5 **Regression**: $l(f,(x,y)) = (f(x)-y)^2$
	- Classification: $l(f,(x,y)) = \mathbf{1}(f(x) \neq y)$
	- Density estimation: $l(q, z) = -log(q(z))$

- ¹ Learning: finding a good function *f* ∗ from a set of functions F
- ² How to find the goodness of a function *f*?
- **3** Through a loss $l : \mathcal{F} \times \mathcal{L} \rightarrow \mathcal{R}$
- ⁴ Such that value of *l*(*f, z*) increases with the wrongness of *f* on *z*: (measure of discripency between the expected and predicted)
- 5 **Regression**: $l(f,(x,y)) = (f(x)-y)^2$
	- Classification: $l(f,(x,y)) = \mathbf{1}(f(x) \neq y)$
	- Density estimation: $l(q, z) = -log(q(z))$
- ⁶ Loss may have additional terms (from prior knowledge)

Expected Risk

1 We want *f* with small expected (average) risk $R(f) = \mathbb{E}_z(l(f, z))$

Expected Risk

1 We want *f* with small expected (average) risk $R(f) = \mathbb{E}_z(l(f, z))$ 2 $f^* = \operatorname{argmin} R(f)$ *f*∈F

Expected Risk

- 1 We want *f* with small expected (average) risk $R(f) = \mathbb{E}_z(l(f, z))$ 2 $f^* = \operatorname{argmin} R(f)$ *f*∈F
- **3** This is unknown. However, if the training data $\mathcal{D} = \{z_1, \ldots, z_N\}$ is i.i.d. we can estimate the risk empirically (known as empirical risk),

$$
\hat{R}(f; \mathcal{D}) = \hat{\mathbb{E}}_{\mathcal{D}}(l(f, z)) = \frac{1}{N} \sum_{i=1}^{N} l(f, z_n)
$$